

GS-300

VI Semester B.Sc. Examination, May/June - 2019

PHYSICS - VIII

Electronics Magnetic Materials, Dielectrics & Quantum Mechanics-III

(FRESH) (CBCS) (2018-19 & Onwards)

Time: 3 Hours Max. Marks: 70

Instruction: Answer all Parts.

PART - A

	Ans	swer any five questions. Each question carries Eight marks. 5x8	3=40
1.	(a)	Explain the concept of virtual ground of an operational amplifier.	3+5
	(b)	Derive an expression for voltage gain of a non inverting amplifier using op-amp.	
2.	(a)	State Barkhausen criterion for sustained oscillations.	2+6
	(b)	Explain with a circuit diagram working of a phase shift oscillator. Write the expression for its frequency of oscillation.	
3.	(a)	State De Morgan's theorems.	2+6
	(b)	What is a full adder? Draw the logic diagram of full adder using two hadders and write its truth table.	alf
ŀ.	(a)	Explain the weiss domain theory of Ferromagnetism.	4+4
	(b)	Distinguish between hard and soft magnetic materials.	
	Wha	at is a Lorentz field? Derive the expression for Lorentz field.	8
	(a)	What is meant by Normalisation of a wavefunction?	2+6
	(b)	Solve Schrodinger time independent equation for a free particle in on dimension and show that the momentum of the particle is precisely defined.	e
	it to	up Schrodinger equation for a particle in one dimensional box and solv obtain the eigen values. Represent the first three wave function hically.	

P.T.O.

- Write Schrodinger equation for a linear harmonic oscillator. (a)
- What is a rigid rotator? Write expression for energy of a rigid rotator. (b)
- What is a quantum mechanical operator? Write quantum mechanical operators for energy (c) operators for energy and momentum.

PART - B

5x4=2

Solve any five problems. Each problem carries four marks. $[\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}; \ \mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}]$ mass of electron = 9.1×10^{-31} kg; h= 6.625×10^{-34} Js mass of proton = 1.67×10^{-27} kg]

Find the output voltage in the given circuit if $V_1 = V_2 = 0.1V$ 9.

- 10. An amplifier has a gain of 800. When the feedback is applied, the gain is reduced to 150. Find the feedback fraction.
- Convert (376)₈ to binary number. 11. (a)
 - Convert (10110)₂ to Gray code.
- 12. A paramagnetic material has magnetic field intensity of 10⁴ Am⁻¹. If the susceptibility of the material at room temperature is 3.7×10^{-3} . Calculate the magnetisation and flux density of the material.
- 13. The dielectric constant of helium gas at NTP is 1.0000684. Calculate the electronic polarizability of atoms if the gas contains 2.7×10^{25} atoms per m³.
- **14.** The operator $\left(x + \frac{d}{dx}\right)$ has the eigen value λ , operating on a function.

Find the corresponding eigen function.

- Assuming the nucleus as a cubical box with a size of 10⁻¹⁴m, calculate the lowest energy of a proton inside it.
- 16. The period of a linear harmonic oscillator is 1 milli second. Find its zero point energy in e.v.

PART - C

- 17. Answer any five questions. Each question carries two marks. 5x2=10
 - (a) Does the input resistance of op-amp decrease with negative feedback ? Explain.
 - (b) NAND gate is an universal gate. Explain.
 - (c) Is 8 an octal number? Explain.
 - (d) Is BCD code a weighted code? Explain.
 - (e) Is N₂ a polar dielectric? Explain.
 - (f) It is easy to magnetise a soft magnetic material than a hard magnetic material. Why?
 - (g) Is the ground state of a particle in three dimensional box degenerate? Explain.
 - (h) $\psi = ax^2$ is not an acceptable wave function in quantum mechanics. Why?